Deep Multitask Learning for Semantic Dependency Parsing

ACL17 Hao Peng Sam Thomson. Noah A. Smith

Reporter : Xiachong Feng

Outline

- Author
- Multitask
- Semantic Dependency Parsing
- Problem
- Motivation
- Model

Author

• Hao Peng

- Third year Ph.D. student at the University of Washington, advised by Prof. Noah Smith.
- Before coming to UW, he was an undergraduate at **Peking University**.

	All	Since 2014
Citations	509	509
h-index	7	7
i10-index	6	6
		220
		165
		110
	- 11	55
	2014 2015 2016 2017 2	018 2010 0

Multitask (多任务学习)

自然语言处理中的多任务学习邱锡鹏

Multitask (多任务学习)

自然语言处理中的多任务学习邱锡鹏

Semantic Dependency Parsing

- 语义依存分析:该任务试图找出所有在语义上有所关联的词语对,并
 且预测相应的语义标签。
- 在中文界,最有影响力的标注方案是BH-SDP,由北京语言大学和哈尔滨工业大学联合制定。
- 语义依存成立的两个词语常常满足:
 - 一个是谓词(predicate),包括大部分谓语性成分(大部分动词、小部分名词 或形容词)。
 - 另一个是论元(argument),指的是与谓语直接相关的词语(比如谓词是"吃"的话,那么论元就包括"吃"这个动作的发出者、与"吃"相关的食物、餐具、时间和地点等)
- Who did what to whom when and where

Who did what to whom when and where

中文语义依存分析—通往中文语义理解的一条蹊径 SCIR 丁宇

Semantic Dependency Tree & Graph

- •语义依存树 && 语义依存图
- 语义依存树与语义依存图的主要区别在于,
 - 1. 在依存树中,任何一个成分都不能依存于两个或两个以上的成分,而 在依存图中则允许句中成分依存于两个或两个以上的成分。
 - 2. 在依存图中允许依存弧之间存在交叉, 而依存树中不允许。

https://www.xfyun.cn/services/semanticDependence

Problem

- Full semantic graphs can be **expensive to annotate**.
- Efforts are fragmented across competing semantic theories, leading to a **limited number of annotations in any one formalism**.

2015 SemEval shared task on Broad-Coverage Semantic Dependency Parsing (SDP; Oepen et al., 2015)

English-language corpus with parallel annotations for three semantic graph representations

Motivation

• Overlap among theories and their corresponding representations can be exploited using multitask learning. allowing us to learn from more data.

(c) PSD

Three formalisms

• DM (DELPH-IN MRS)

- DeepBank
- Manually-corrected parses from the LinGO English Resource Grammar

• PAS (Predicate-Argument Structures)

- Extracted from the Enju Treebank
- Automatic parses from the Enju HPSG parser
- PSD (Prague Semantic Dependencies)
 - Extracted from the tectogrammatical layer of the Prague Czech-English Dependency Treebank

Single-Task SDP

- Input sentence x_{i}
- Set of possible semantic graphs $\mathcal{Y}(x)$
- Score function S:

$$\hat{y} = \underset{y \in \mathcal{Y}(x)}{\arg \max} S(x, y),$$

• Decompose **S** into a sum of local scores **s** for local structures **p** in the graph

$$S(x,y) = \sum_{p \in y} s(p).$$

- Basic model: Neural arc-factored(弧分解) graph-based dependency parsing
- **AD**³ to find the highest-scoring internally consistent semantic graph.

Basic Structure

predicate, indicating a predicate word, denoted $i \rightarrow \cdot$; unlabeled arc, representing the existence of an arc from a predicate to an argument, denoted $i \rightarrow j$; labeled arc, an arc labeled with a semantic role, denoted $i \stackrel{\ell}{\rightarrow} j$.

Learning

Loss function

$$\begin{split} \min_{\Theta} \frac{\lambda}{2} \|\Theta\|^2 &+ \frac{1}{N} \sum_{i=1}^N L(x_i, y_i; \Theta), \\ \text{L2-regularized} & \text{structured hinge loss} \\ L(x_i, y_i; \Theta) &= \max_{y \in \mathcal{Y}(x_i)} \{S(x_i, y) + c(y, y_i) \\ \text{Sentence Gold parse} &- S(x_i, y_i). \end{split}$$

Decoding Constraints

 $i \rightarrow \cdot$ if and only if there exists at least one jsuch that $i \rightarrow j$; If $i \rightarrow j$, then there must be exactly one label ℓ such that $i \stackrel{\ell}{\rightarrow} j$. Conversely, if not $i \rightarrow j$, then there must not exist any $i \stackrel{\ell}{\rightarrow} j$;

	Model	DM	PAS	PSD	Avg.
id	Du et al., 2015	89.1	91.3	75.7	86.3
	A&M, 2015	88.2	90.9	76.4	86.0
	BASIC	89.4	<u>92.2</u>	<u>77.6</u>	<u>87.4</u>
ood	Du et al., 2015	81.8	87.2	73.3	81.7
	A&M, 2015	81.8	86.9	74.8	82.0
	BASIC	<u>84.5</u>	<u>88.3</u>	<u>75.3</u>	<u>83.6</u>

Table 2: Labeled parsing performance (F_1 score) on both in-domain (id) and out-of-domain (ood) test data. The last column shows the micro-average over the three tasks. Bold font indicates best performance without syntax. Underlines indicate statistical significance with Bonferroni (1936) correction compared to the best baseline system.⁴

Multitask SDP

- Use training data for all three formalisms to improve performance on each formalism's parsing task.
- First-order model, where representation functions are enhanced by parameter sharing while inference is kept separate for each task
- Cross-task higher-order structures that uses joint inference across different tasks

Multitask SDP with Parameter Sharing

• FREDA :Task-specific BiLSTM encoders as well as a common one that is shared across all tasks(\tilde{h}).

$$\boldsymbol{\phi}^{(t)}(i \stackrel{\ell}{\to} j) = \tanh \left(\mathbf{C}_{\mathrm{LA}}^{(t)} \left[\mathbf{h}_{i}^{(t)}; \mathbf{h}_{j}^{(t)}; \right] \\ \widetilde{\mathbf{h}}_{i}; \widetilde{\mathbf{h}}_{j} \right] + \mathbf{b}_{\mathrm{LA}}^{(t)}$$

• SHARED: use only the shared encoder and does not use task-specific encoders

Multitask SDP with Cross-Task Structures

 Look at interactions between arcs that share the same head and modifier

Multitask SDP with Cross-Task Structures

• Higher-order structure scoring

• SHARED1

- First-order model
- Single shared Bi-LSTM encoder
- Inference separate for each task
- FREDA1
 - First-order model
 - Shared encoder as well as task-specific ones
 - Inference is kept separate for each task

• SHARED3

- Third-order model
- Shared Bi-LSTM encoder
- Cross-task structures and inference
- FREDA3
 - Third-order model
 - Shared encoder as well as task-specific ones
 - Cross-task structures and inference

	DM	PAS	PSD	Avg.
Du et al., 2015	89.1	91.3	75.7	86.3
A&M, 2015 (closed)	88.2	90.9	76.4	86.0
A&M, 2015 (open) [†]	89.4	91.7	77.6	87.1
BASIC	89.4	<u>92.2</u>	77.6	87.4
SHARED 1	89.7	91.9	77.8	87.4
FREDA 1	<u>90.0</u>	<u>92.3</u>	78.1	<u>87.7</u>
SHARED3	90.3	92.5	78.5	88.0
FREDA3	<u>90.4</u>	<u>92.7</u>	<u>78.5</u>	<u>88.0</u>

(a) Labeled F_1 score on the in-domain test set.

Even with the best open track system for DM and PSD, but improves on PAS and on average, without making use of any syntax.

	DM	PAS	PSD	Avg.
Du et al., 2015	89.1	91.3	75.7	86.3
A&M, 2015 (closed)	88.2	90.9	76.4	86.0
A&M, 2015 $(open)^{\dagger}$	89.4	91.7	77.6	87.1
BASIC	89.4	<u>92.2</u>	77.6	87.4
SHARED 1	89.7	91.9	77.8	87.4
FREDA 1	<u>90.0</u>	<u>92.3</u>	78.1	<u>87.7</u>
shared3	90.3	92.5	78.5	88.0
freda3	<u>90.4</u>	<u>92.7</u>	<u>78.5</u>	<u>88.0</u>

(a) Labeled F_1 score on the in-domain test set.

- Even with the best open track system for DM and PSD, but improves on PAS and on average, without making use of any syntax.
- Three of our four multitask variants further improve over our basic model .

	DM	PAS	PSD	Avg.
Du et al., 2015	89.1	91.3	75.7	86.3
A&M, 2015 (closed)	88.2	90.9	76.4	86.0
A&M, 2015 (open) [†]	89.4	91.7	77.6	87.1
BASIC	89.4	<u>92.2</u>	77.6	87.4
SHARED 1	89.7	91.9	77.8	87.4
FREDA 1	<u>90.0</u>	<u>92.3</u>	<u>78.1</u>	<u>87.7</u>
shared3	90.3	92.5	78.5	88.0
freda3	<u>90.4</u>	<u>92.7</u>	<u>78.5</u>	<u>88.0</u>

(a) Labeled F_1 score on the in-domain test set.

- Even with the best open track system for DM and PSD, but improves on PAS and on average, without making use of any syntax.
- Three of our four multitask variants further improve over our basic model .
- **Best** models (SHARED3, FREDA3)

Experiments-Effects of structural overlap

• **DM and PAS** are more structurally similar to each other than either is to PSD.

	Undirected			Directed			
	DM	PAS	PSD	DM PAS PSD			
DM	-	67.2	56.8	- 64.2 26.1			
PAS	70.0	-	54.9	66.9 - 26.1			
PSD	57.4	56.3	-	26.4 29.6 -			

Table 5: Pairwise structural similarities between the three formalisms in unlabeled F_1 score. Scores from Oepen et al. (2015).

Experiments-Effects of structural overlap

• improves on DM and PAS, but *degrades* on PSD.

	DM		PAS		PSD	
	UF	LF	UF	LF	UF	LF
FREDA1 FREDA3	91.7 91.9	90.4 90.8	93.1 93.4	91.6 92.0	89.0 88.6	79.8 80.4

Table 6: Unlabeled (UF) and labeled (LF) parsing performance of FREDA1 and FREDA3 on the development set of SemEval 2015 Task 18.

Thanks!